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Abstract. Many types of periodic solutions to the pair of nonlinear partial differential equations describing optical
cascading are obtained in terms of Jacobian elliptic functions. The choice of appropriate forms for periodic solu-
tions is based on the known solitary-wave solutions of the system. By a straightforward procedure for determining
coefficients, it is possible to construct periodic analogues of some classes of solitary wave solutions.
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1. Introduction

Localized solutions (vector solitons) of coupled nonlinear Schrödinger (NLS) equations are
of interest in nonlinear optics and telecommunications, since many waveguides are capable
of supporting more than one mode with closely matched phase and group speeds. Recently,
a number of proposals for exploiting coupled pulses or beams in compact devices using
crystals with significant quadratic nonlinearity have been proposed, following experimental
demonstration of ‘spatial vector solitons’ using the cascading process in which a beam at a
fundamental frequency couples resonantly to one at the second harmonic frequency.

A number of explicit solutions to the quadratically coupled ‘cascading’ p.d.e.s have been
found (Karamzin and Sukhorukov [1], Hayata and Koshiba [2], Werner and Drumond [3, 4],
Menyuk, Shiek and Torner [5], Parker [6]). Those found in [1–4] are bright-bright solitons,
while some bright-dark solitons appear in [5] and reference [6] includes many possibilities in
which both modes have constant (nonzero) amplitude at a distance from the soliton.

Just as coupled NLS systems have solutions with periodic envelopes (seee.g. [7, 8]) de-
scribed by Jacobian elliptic functions, it transpires that the cascading equations also possess
solutions involving elliptic functions [9]. This paper details all such solutions found by an
exhaustive search procedure and relates them to the known vector soliton solutions. Typ-
ical profiles are illustrated, showing how, as the period increases, the solutions become like
periodically spaced solitary wave solutions.

Since the governing Equations (3) for optical cascading may also describe resonant in-
teractions between a fundamental and a second-harmonic signal in other branches of physical
science, the solutions described here should have broad applicability. They certainly are only a
subset of all possible travelling-wave or stationary solutions (described by bounded solutions
of Equations (6) and (7)). While the present analysis does not address the question of stability,
it does indicate the rich variety of possible waveforms. Each provides a starting point for a
numerical search for stable waveforms using parameter continuation.
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150 D. F. Parker and E. N. Tsoy

2. Formulation and solitary solutions

In a planar waveguide having optical properties depending only on the Cartesian coordinate
x3, the electric field of a linearized guided mode may be written as

E = W (x3; k, ω)eiψ, ψ ≡ k · x − ωt, (1)

with frequencyω, (surface) wave vectork = (k1, k2,0) and phase speedc ≡ ω/k, (k ≡ |k|)
determined by a dispersion relationD(ω, k) = 0 (or, equivalentlyω = �(k)). The function
W (x3; k, ω) describes the modal field, while the associated group velocitycg ≡ g(k) has
componentsgi = ∂�/∂ki = −(∂D/∂ki)/(∂D/∂ω), (i = 1,2), g3 = 0 and has magnitude
cg = |g|.

Strong nonlinear interaction between modes can arise if a second harmonic modeE =
W (2)(x3; k(2),2ω)exp(iψ(2)), whereψ(2) ≡ k(2) · x − 2ωt, has bothk(2) ' 2k andg(2)i ≡
∂�/∂k

(2)
i ' gi for 2ω = �(k(2)). Thus, the phase and group velocities are simultaneously

closely matched.
Coordinatesy1 ≡ ε(p1x1+ p2x2 − cgt), y2 ≡ ε(p1x2 − p2x1), Z ≡ ε2 (p1x1+ p2x2) are

introduced withp = (p1, p2,0) ≡ g/|g| the unit vector parallel to the group velocity of the
fundamental mode. Then, allowing for both spatial and temporal modulation of the complex
amplitudesA(y1, y2, Z), B(y1, y2, Z) in the representation

E = AW eiψ + BW (2) e2iψ + c.c.+O(ε), (2)

where c.c. denotes the complex conjugate, we find that the amplitude-modulation equations
can be put into the form

iM
∂A

∂Z
+ PJL ∂2A

∂yJ ∂yL
= J ∗2A∗B,

iM̃
∂B

∂Z
+ iγ̃J

∂B

∂yJ
+ 1̃B + P̃JL ∂2B

∂yJ ∂yL
= JA2, (3)

where summation over repeated indicesJ,L (= 1,2) is assumed. Derivation of Equations (3)
requires the restrictions(g(2) − g)/|g| = O(ε), (k(2) − 2k)/k = O(ε2), for someε � 1.
Thus, phase-velocity matching is more stringent than group-velocity matching.

Dependence ony1 andy2 records modulations along and transverse, respectively, to rays
having orientationg, relative to an observer moving at velocityg. Dependence onZ measures
the gradual evolution along each ray. The parametersPJL/M and P̃JL/M̃ are matrices of
dispersion and diffraction coefficients for the fundamental and second-harmonic modes, re-
spectively. The parameters̃1/M̃ andγ̃J /M̃ arise from the phase speed mismatchc(2)− c and
group velocity mismatchg(2) − g, respectively. The (complex) coefficientJ/M is computed
as amodal overlapintegral of the two modes, while∗ denotes a complex conjugate, withM
andM̃ (' 2M) both real.

Travelling-wave solutions to thecascading system(3) are sought in the form

√
2A = J−1 eiθu(ζ ), 2B = J−1 e2iθv(ζ ), (4)

ζ ≡ κJ yJ −M−1Z, θ ≡ βJ yJ −M−1σZ. (5)
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Insertion into (3) then yields the simultaneous ordinary differential equations (o.d.e.)

pu′′(ζ )+ i5u′(ζ )+6u(ζ ) = u∗(ζ )v(ζ ), (6)

p̃v′′(ζ )+ i5̃v′(ζ )+ 6̃v(ζ ) = u2(ζ ) (7)

in which ′ denotes d/dζ and the real coefficients are

p ≡ PJLκJκL, p̃ ≡ P̃JLκJ κL,
5 ≡ 1+ 2PJLβJ κL, 5̃ ≡ M̃M−1+ 4P̃JLβJ κL + γ̃J κJ ,
6 ≡ −σ − PJLβJβL, 6̃ ≡ 1̃− 2γ̃J βJ − 2σM̃M−1 − 4P̃JLβJβL.

Motivated by the solutions found in [1–5] (and by the large mismatch behaviour6̃ →∞
in which (7) givesv ' 6̃−1u2, so that (6) yields the NLS equation), solutions were sought in
[6] in the form

u = aS2+ bST + cS + dT + e, v = ãS2+ b̃ST + c̃S + d̃T + ẽ, (8)

in which a, b, . . . , ẽ arecomplexconstants, whileS ≡ sech(rζ ), T ≡ tanh(rζ ). Insertion
into the system (6), (7) then yielded two sets of nine algebraic equations fora, b, . . . , ẽ.
Although this algebraic system is overdetermined, it possesses six classes of solution, which
were identified by an exhaustive search procedure. They yield solutions (8) as follows:

(I) u = 6r2
√
pp̃ eiα sech2 rζ, v = −6r2p e2iα sech2 rζ forpp̃ > 0.

These solutions (published previously in [1, 2, 3]) have both|u| and |v| in the sech2 form of
a KdV soliton. They require that thepropagation conditions5 = 5̃ = 0, 6 = −4r2p, 6̃ =
−4r2p̃ are fulfilled.

(II) u = i6r2
√−pp̃ eiα sechrζ tanhrζ, v = 6r2p e2iα sech2 rζ forpp̃ < 0.

These solutions, in whichu is odd, are given in [3] and [5]. They require the propagation
conditions5 = 5̃ = 0, 6 = −r2p, 6̃ = 2r2p̃.

(III) u = (266̃)1/2 eiα sechrζ, v = −2r2p e2iα sech2 rζ for66̃ > 0.

These solutions, given in [4], require propagation conditions5 = 5̃ = p̃ = 0, 6 = −r2p.

This is the casev = 6̃−1u2 in which (6) reduces to the o.d.e. for NLS solitons. Each of
(I)–(III) describes bright-bright solitons.

(IV ) u = 6r2
√−pp̃ eiα{X + i tanhrζ } sechrζ,

v = 6r2p e2iα{16F−(µ)+ sech2 rζ + 2 iY tanhrζ } forpp̃ < 0

withX = tanµ+3−1/2 secµ, Y = tanµ,F±(µ) = X(9Y −2X)±(2+3Y/X). In this family
of solutions, given in [6],µ is adjustable. The propagation conditions are

5/rp = 2(3Y − 2X), 5̃/rp̃ = 2(3X − Y ),
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6/(r2p) = F+(µ)− 1, 6̃ = 0.

For eachµ, the profileu is bright while|v| tends to a nonzero constant as|ζ | → ∞.

(V) u = eiα
√
p6̃ {5/(2p)+ ir tanhrζ } , v = 6̃−1u2, forp6̃ > 0.

These solutions, mentioned in [6], like (III) correspond to a case in which (6) reduces to
the o.d.e. for NLS solitons. They describe grey/grey solitons, with propagation conditions
6/(r2p) = 2+ 1

2(5/rp)
2, p̃ = 5̃ = 0.

(VI) u = 6r2
√
pp̃ eiα{sech2rζ + iX tanhrζ −QX},

v = −6r2p e2iα{sech2 rζ + 2iY tanhrζ + (Q−1−Q)Y } forpp̃ > 0.

These solutions, in which typically both|u| and|v| are nonzero asζ →±∞, like (IV) involve
an adjustable parameter, sinceX, Y andQmay be any solutions of

3QX − 6Q−1Y + 9XY = 2+ 2X2,

3QX2 = 6XY(Q+ Y )− 2Y 3− 2Y − 3X2Y.

Typical profile pairs are shown in [6]. The associated propagation conditions are

5/rp = 2(3Y − 2X), 5̃/rp̃ = 2(3X − Y ),
6/(r2p) = 6(QY +Q−1X), 6̃/(r2p̃) = 6QX2Y−1.

In solutions of each of the classes (I)–(VI) the propagation conditions provide restrictions
on the parametersκ1, κ2, β1, β2, σ and r appearing in (5), (8). Possibilities include spatial
solitons(κ1 = 0), in which ε(κ2M)

−1 corresponds to a ‘walk-off’ angle, purely temporal
solitons (κ2 = 0) and, more generally, temporal solitons oriented obliquely to the ray direction
p. In all cases, these arevector solitons, in which signals in theu andv modes are bound
together by the cascading (feedback) process.

3. Periodic travelling-wave solutions

The procedure for seeking periodic solutions generalizing the solutions of classes (I)–(VI) to
Equations (6) and (7) is to use the ansatz

u = a + bN + cC + dD + eNC + fND + gCD + hN2,

v = ã + b̃N + c̃C + d̃D + ẽNC + f̃ ND + g̃CD + h̃N2, (9)

involving the Jacobian elliptic functions

C ≡ cnrζ, D ≡ dnrζ, N ≡ snrζ,

which satisfy the identities

C2+N2 = 1, D2+ κ2N2 = 1,
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C ′ = −rND, D′ = −rκ2NC, N ′ = rCD, (10)

whereκ is the modulus and′ denotes d/dζ, as earlier. It should be recalled thatC andD are
even functions ofrζ, whileN is odd. Moreover, for moderate values of|rζ |, asκ → 1 both
C,D→ sechrζ, whileN → tanhrζ.

After the ansatz (9) is inserted into (6) and (7), use of the identities (10) to eliminateC2

andD2 in favour ofN2 allows both sides of each equation to be written as linear combinations
of

1, N,C,D; NC,ND,CD,N2; N2C,N2D,NCD,N3;
N3C,N3D,N2CD,N4.

Comparison of coefficients in (6) then yields the sixteen equations:

N4 : 6κ2r2ph = −e∗ẽ − κ2f ∗f̃ + κ2g∗g̃ + h∗h̃,
N2CD : 6κ2r2pg = e∗f̃ + f ∗ẽ + g∗h̃+ h∗g̃,
N3D : 6κ2r2pf = f ∗h̃+ h∗f̃ − e∗g̃ − g∗ẽ,
N3C : 6κ2r2pe = e∗h̃+ h∗ẽ − κ2f ∗g̃ − κ2g∗f̃ ,

N3 : 2κ2r2pb + i2κ2r5g = b∗h̃+ h∗b̃ − κ2d∗f̃ − κ2f ∗d̃ − c∗ẽ − e∗c̃,
NCD : i2r5h = b∗g̃ + g∗b̃ + c∗f̃ + f ∗c̃ + d∗ẽ + e∗d̃,
N2D : 2κ2r2pd − i2r5e = b∗f̃ + f ∗b̃ − c∗g̃ − g∗c̃ + d∗h̃+ h∗d̃,
N2C : 2κ2r2pc − i2κ2r5f = b∗ẽ + e∗b̃ + c∗h̃+ h∗c̃ − κ2d∗g̃ − κ2g∗d̃,

N2 : [6 − 4(1+ κ2)r2p]h = a∗h̃+ h∗ã + b∗b̃ − c∗c̃ − κ2d∗d̃
+e∗ẽ + f ∗f̃ − (1+ κ2)g∗g̃,

CD : [6 − (1+ κ2)r2p] g + ir5b = a∗g̃ + g∗ã + c∗d̃ + d∗c̃,
ND : [6 − (1+ 4κ2)r2p] f − ir5c = a∗f̃ + f ∗ã + b∗d̃ + d∗b̃ + e∗g̃ + g∗ẽ,
NC : [6 − (4+ κ2)r2p] e − iκ2r5d = a∗ẽ + e∗ã + b∗c̃ + c∗b̃ + f ∗g̃ + g∗f̃ ,
D : (6 − κ2r2p)d + ir5e = a∗d̃ + d∗ã + c∗g̃ + g∗c̃,
C : (6 − r2p)c + ir5f = a∗c̃ + c∗ã + d∗g̃ + g∗d̃,
N : [6 − (1+ κ2)r2p] b − i(1+ κ2)r5g = a∗b̃ + b∗ã + c∗ẽ + e∗c̃ + d∗f̃ + f ∗d̃,
1 : 6a + 2r2ph = a∗ã + c∗c̃ + d∗d̃ + g∗g̃.

From Equation (7) an analogous set of 16 equations is obtained, witha, b, . . . h; p,5,6 on
the left-hand sides replaced byã, b̃, . . . h̃; p̃, 5̃, 6̃ and with all symbols∗ and ˜ removed
from the right-hand sides. This (grossly) overdetermined set of 32 equations for sixteen coef-
ficients in (9) and forp, p̃,5, 5̃,6 and6̃ may be analysed (much as the analogous equations
arising from (9) are analysed in [6]) by suitable groupings of the equations and coefficients.
Moreover, it is known from the solutions presented in Section 2, that many classes of vector
soliton exist in the limitκ = 1.
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The eight equations arising from the coefficients ofN4, N2CD,N3D andN3C may be
combined in pairs to give

6κ2r2p̃(ẽ ± κf̃ ) = 2(e ± κf )(h∓ κg),
6κ2r2p̃(h̃± κg̃) = (h± κg)2− (e ∓ κf )2,
6κ2r2p(h± κg) = (h∗ ± κg∗)(h̃± κg̃)− (e∗ ∓ κf ∗)(ẽ ∓ κf̃ ),
6κ2r2p(e ± κf ) = (e∗ ± κf ∗)(h̃∓ κg̃)+ (h∗ ∓ κg∗)(ẽ ± κf̃ ).

Moreover, these may be further combined and rewritten in terms of the eight quantities

h+ κg ± i(e − κf ) ≡ X±, h− κg ± i(e + κf ) ≡ Y±,
h̃+ κg̃ ± i(ẽ − κf̃ ) ≡ X̃±, h̃− κg̃ ± i(ẽ + κf̃ ) ≡ Ỹ±,

as two uncoupled, but similar, pairs of equations

6κ2r2p̃X̃± = X2
±, 6κ2r2pX± = X∗±X̃±,

6κ2r2p̃Ỹ± = Y 2
±, 6κ2r2pY± = Y ∗±Ỹ±.

These show, that eitherX+ = 0 = X− or X+X∗− = K2 = X−X∗+, while simultaneously
eitherY+ = 0 = Y− or Y+Y ∗− = K2 = Y−Y ∗+, whereK ≡ 6κ2r2

√
pp̃ is either real or pure

imaginary. Consequently, four possibilities arise fore, f, g, h; ẽ, f̃ , g̃, h̃:

(i) X± = 0 = Y±. This givese = f = g = h = 0 with eitherẽ = f̃ = g̃ = h̃ or p̃ = 0 (a
propagation condition).

(ii) X± = 0, Y± = Kρ±1 eiα with ρ and α real and arbitrary, so that̃X± = 0, Ỹ± =
6κ2r2pρ±2 e2iα. This yields the representation

e = κf = −3
2iκ2r2

√
pp̃ eiα(ρ − ρ−1), h = −κg = 3

2κ
2r2
√
pp̃ eiα(ρ + ρ−1),

ẽ = κf̃ = −3
2iκ2r2p e2iα(ρ2− ρ−2), h̃ = −κg̃ = 3

2κ
2r2p e2iα(ρ2+ ρ−2).

(iii) Y± = 0 with X± = Kρ±1 eiα. Since this is equivalent to (ii) after the replacement
κ →−κ, this need not be considered further.

(iv) X± = Kρ1
±1eiα, X̃± = 6κ2r2pρ1

±2 e2iα;

Y± = Kρ2
±1 eiβ, Ỹ± = 6κ2r2pρ2

±2 e2iβ

with ρ1, ρ2, α andβ real and arbitrary. This gives equations for each ofe, f, . . . h̃ which
involve all four parametersα, β, ρ1 andρ2 (e.g. h = 1

4(X+ +X− + Y+ + Y−)).
An exhaustive search procedure next solves the eight equations arising from terms of degree
three inC,D andN as a linear system forb, c, d, b̃, c̃, d̃, together with compatibility condi-
tions. However, since in the limitκ → 1 solutions have been found only for classes (I)–(VI)
in each of which many of the coefficients in (9) vanish, a simpler strategy has been followed,
by seeking solutions in classes which generalize each of (I)–(VI).
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Class I
Since the only combinations ofC,D andN which appear in (9) yet tend to sech2 rζ asκ → 1
areCD and 1−N2, solutions are sought by retaining only the coefficientsa, g, h, ã, g̃ andh̃
in (9). This yields sixteen algebraic equations having three separate possibilities for solution
(each withpp̃ > 0):

I.1. This utilizes (ii) or (iii) withρ = 1, with α arbitrary and withh = ±κg, h̃ = ±κg̃. The
profiles are:

u = 3r2
√
pp̃ eiα{κ2sn2 rζ ± κ cnrζ dnrζ − 1

6[1+ κ2+ L]},

v = 3r2p e2iα{κ2sn2 rζ ± κ cnrζ dnrζ − 1
6[1+ κ2+ L]},

whereL ≡ ±√(1+ κ2)2+ 12κ2. The correspondingpropagation conditionsare:

5 = 5̃ = 0, 6/(r2p) = 6̃/(r2p̃) = −L.

I.2. This hasg = g̃ = 0, h = 6κ2r2
√
pp̃ eiα, h̃ = 6κ2r2p e2iα with α arbitrary. The profiles

are:

u = 6r2
√
pp̃ eiα{κ2 sn2 rζ − 1

3[1+ κ2+M]},
v = 6r2p e2iα{κ2 sn2 rζ − 1

3[1+ κ2+M]},
whereM = ±√1− κ2+ κ4 and thepropagation conditionsare:

5 = 5̃ = 0, 6/(r2p) = 6̃/(r2p̃) = −4M.

I.3. This hash = g̃ = 0, g = i6κ2r2
√
pp̃ eiα, h̃ = −6κ2r2p e2iα with α arbitrary. The profiles

are:

u = i6κr2
√
pp̃ eiαcnrζ dnrζ, v = 6κ2r2p e2iα[2(1+ κ2)−1− sn2 rζ ],

with 5 = 5̃ = 0, 6/(r2p) = 1+ κ2− 12κ2(1+ κ2)−1, 6̃/(r2p̃) = −2(1+ κ2).

To help in the interpretation of these profiles, it should be recalled that each of cnrζ, dnrζ,
snrζ has period 4K(κ), whereK(κ) is the complete elliptic integral. Moreover, cn and dn are
even functions, while sn is odd and dn(rζ + 2K) = dnrζ, while cn(rζ + 2K) = −cnrζ and
sn(rζ+2K) = −snrζ. Hence, changing the sign of any termκ cnrζ in I.1 or I.3 is equivalent
merely to a shift 2K along therζ axis.

For I.1, the profilesue−iα andv e−2iα are real and in constant ratio. ForL positive, in the
limit κ → 1, both−ue−iα and−v e−2iα are sech2 rζ pulses when the minus sign is taken in
front of κ. For κ 6= 1, the profiles become periodically spaced pulses, with period 4K(κ).
When the positive sign is taken in front ofκ, the only change is that pulses are displaced by
2K(κ) along therζ axis (so that, asκ → 1, thenu→ 0, v→ 0 atζ = 0). These pulses I.1+
are illustrated in Figure 1(a).

The choice ofL as the negative square root merely addsr2
√
pp̃ |L| to ue−iα, so giving

the profiles I.1− as shown in Figure 1(b). Againv e−2iα has a similar profile, so that the
solution describes periodically-spaced twin-hole dark pulses. These generalize the twin-hole
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156 D. F. Parker and E. N. Tsoy

Figure 1. Profiles ofū ≡ u/(6r2
√
pp̃ eiα) and v̄ ≡ v/(6r2p e2iα) versusrζ for κ = 0·8 - - - -, κ = 0·9 —,

κ = 0·99 —. (a) Case I.1+, −ū = −v̄; (b) Case I.1−, −ū = −v̄; (c) Case I.2−, −ū = −v̄; (d) Case I.2−,
−ū = −v̄; (e) Case I.3,−iū; (f) Case I.3,v̄.

dark pulses of Hayata and Koshiba [10] and Buryak and Kivshar [11]. They have no change
in phase across each pulse.

For I.2, the profiles ofue−iα andv e−2iα are again real and in constant ratio. TakingM
as the positive square root gives profiles I.2+ of −ue−iα and−v e−2iα as periodically spaced
pulses, but with period 2K(κ)which is half that of I.1. Similarly, the choice ofM as the
negative square root gives periodically-spaced twin-hole pulses, without phase change. These
profiles (I.2−) are shown in Figures 1(c), (d), respectively.

For I.3, profiles of−iue−iα andv e−2iα are both real and periodic, but they differ. The
profile of v e−2iα is a sequence of bright pulses with period 2K(κ), while that of−iue−iα

has double the period. The alternation of positive and negative pulses corresponds to phase
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Solitary and periodic solutions157

Figure 2. Solitary wave profiles. (a)̄u = −v̄ = sech2rζ for Class (I); (b)ū = v̄ = 2
3 − sech2rζ twin-hole dark

solitons [10, 11]; (c)−iū = sechrζ tanhrζ, v̄ = sech2rζ for Class (II); (d)Re(ū) - - - -, Im(ū) · · · · · · , |ū|— and
v̄ —, for the special caseY = 0 of Class (IV) withū = (3−1/2− i tanhrζ )sechrζ, v̄ = sech2rζ − 4

9.

shifts of±π acrossu pulses at separation 2K(κ) (without a phase shift inv e−2iα ). Thus, al-
though the intensities|u|2 and|v|2 are somewhat similar to those for I.2+, there is an essential
distinction in the phase dependence.

For each of I.1, I.2 and I.3 the propagation conditions include the equations5 = 5̃ = 0,
while6/(r2p) and6̃/(r2p̃) depend onκ. Since in all the cases I.1+, I.2+ and I.3 correspond-
ing to periodically spaced bright pulses it is seen that6/(r2p) → −4, 6̃/(r2p̃) → −4 as
κ → 1, each of these cases is a generalization of the Karamzin and Sukhorukov [1] solution
(I). As κ → 1, the period increases (logarithmically) and the profiles tend to periodically
spaced copies of solution (I), shown in Figure 2(a). The twin-hole cases I.1− and I.2− have
L → −4,M → −1, so that6/(r2p) → 4, 6̃/(r2p̃) → 4 asκ → 1. Moreover, since they
have

−iue−iα, v e−2iα → tanh2 rζ − 1
3,

they are natural generalizations of the Hayata and Koshiba [10] twin-hole dark solitons shown
in Figure 2(b), included in (VI) as the limiting caseY = X,QX = 2/3, X→ 0.

Class II
To generalize the Werner and Drummond odd–even solutions (II) shown in Figure 2(c), the
ansatz (9) is simplified by retaining only the coefficientse, f, ã, g̃ andh̃. This again produces
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sixteen algebraic equations which possess three types of solution. Since they each correspond
to pp̃ < 0, the representation in (iv) is modified using

X± = ±6κ2r2
√−pp̃ ρ1

±1 eiα, Y± = ±6κ2r2
√−pp̃ ρ2

±1 eiβ.

II.1. This hasf = g̃ = 0, so usingρ1 = ρ2 = −1, β = α. The profiles are

u = i6r2
√−pp̃ eiακ2 snrζ cnrζ, v = 6r2p e2iακ2{(2− κ2)−1− sn2 rζ }

with corresponding propagation conditions

5 = 5̃ = 0; 6/(r2p) = 4+ κ2− 6κ2(2− κ2)−1, 6̃/(r2p̃) = 4− 2κ2.

II.2. This hase = g̃ = 0 and arises fromρ1 = −ρ2 = 1, β = α. The profiles are:

u = i6r2
√−pp̃ eiακ snrζ dnrζ, v = 6r2p e2iακ2{(2κ2− 1)−1 − sn2 rζ }

with corresponding propagation conditions

5 = 5̃ = 0; 6/(r2p) = 1+ 4κ2− 6κ2(2κ2 − 1)−1, 6̃/(r2p̃) = 4κ2− 2.

II.3. This hase ∓ κf = 0, h̃ ± κg̃ = 0 and arises from (ii) or (iii) respectively, after
modification to allow forpp̃ being negative. The profiles are:

u = i3r2
√−pp̃ eiακ snrζ {κ cnrζ ± dnrζ },

v = 3r2p e2iα{2κ2(1+ κ2)−1± κ cnrζdnrζ − κ2snrζ }

with corresponding propagation conditions

5 = 5̃ = 0; 6/(r2p) = 1+ κ2− 6κ2(1+ κ2)−1, 6̃/(r2p̃) = 1+ κ2.

In each case,u is an odd, imaginary function, whilev is even and real. In II.1 bothu and
v have fundamental period 2K(κ); in II.2, v still has period 2K(κ), but u has fundamental
period 4K(κ); in II.3, bothu andv have fundamental period 4K(κ). As we see in Figure 3(e),
(f), case II.3+ (using the plus sign in±) describes widely-spaced odd–even pulses resembling
the vector solitons of Class (II) (see Figure 2(c)) and centred atrζ = 0,±4K(κ),etc. The
analogous case II.3− differs only by displacing the pulses to±2K(κ), etc. Case II.1 has
similar pulses but at closer spacing 2K(κ).It is noticeable in Figure 3(b) that, even forκ =
0·9, this |v| profile develops appreciable brightness within the dark troughs between pulses.
Case II.2 differs in that the odd pulses ofu which are centred atrζ = (4n + 2)K(κ) have
opposite sense to those atrζ = 4nK(κ), n integer, as seen in Figure 3(c). Correspondingly,
the pulses forv in Figure 3(d) do not develop twin-holes as in case II.1. Unlike cases II.1 and
II.3, in which the trajectories of(−iue−iα, v e−2iα) encircle the origin once per period, case
II.2 has trajectories which are open arcs. Consequently, there is no relative shift in phase per
complete period of the profile.
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Figure 3. Profiles ofū = −iu/(6r2
√−pp̃ eiα) and v̄ = v/(6r2p e2iα) versusrζ for κ = 0·8 - - - -, κ = 0.9

—, κ = 0·99 —. (a) Case II.1,̄u; (b) Case II.1,v̄; (c) Case II.2,ū; (d) Case II.1,v̄; (e) Case II.3+, ū; (f) Case
II.3+, v̄.

Class III
This is the case in whichv = 6̃−1u2, with c, d, ã = 6̃−1(c2 + d2), g̃ = 26̃−1cd and
h̃ = −6̃−1(c2+ κ2 d2) the only nonvanishing coefficients. These solutions have profiles

u = ir

√
−p6̃

2
eiα{κ cnrζ ± dnrζ },

v = r2p e2iα{12(1+ κ2)± κ cnrζ dnrζ − κ2 sn2 rζ }
with corresponding propagation conditions

5 = 5̃ = 0; p̃ = 0, 6/(r2p) = −1
2(1+ κ2).
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Figure 4. (a) Profilesκ cnrζ + dnrζ for Class III,κ = 0·8 - - - -, κ = 0·9 —, κ = 0·99 —. (b–d) Profiles of
Re(ū) - - - -, Im(ū) · · · · · · , |ū| — andv̄ — for Class IV withū ≡ u/(6r2

√−pp̃ eiα), v̄ ≡ v/(6r2p e2iα) versus
rζ for κ = 0·9. (b) Case IV.1; (c) Case IV.2; (d) Case IV.3.

The profiles are even and represent bright pulses at separation 4K(κ)(centred at 4nK(κ)
for the positive sign as in Figure 4(a), but centred at(2 + 4n)K(κ) for the negative sign.
These latter have profile forv virtually identical to those for Case I.1+). However, like the
corresponding solitary pulses (III), found by Werner and Drummond [4], these solutions cor-
respond to the abnormal case in which dispersion and diffraction of the second-harmonic are
effectively absent. Their practical importance is thereby limited.

Class IV
Solutions generalizing the bright-dark solitary waves (IV) require that, in (9), only the coef-
ficients c, d, e, f, ã, b̃, g̃ and h̃ are retained. Besides the bright-bright possibilities II.1–II.3
found earlier, this yields three cases (each forpp̃ < 0):

IV.1. This hasc = f = b̃ = g̃ = 0, so usingρ1 = ρ2 = 1, we haveβ = α. The profiles are:

u = 6r2
√−pp̃ eiα{H1dnrζ − iκ2cnrζ snrζ },

v = 6r2p e2iα{13(1+ κ2−H 2
1 )− κ2sn2rζ }

whereH 2
1 = 1

3{κ2 − 2+ √(2κ2+ 2)(2κ2 − 1)}, for κ2 ∈ [√3− 1,1]. The corresponding
propagation conditions are5/(rp) = 4H1, 5̃/(rp̃) = −6H1,

6/(r2p) = 2− κ2− 2H 2
1 , 6̃/(r2p̃) = 4− 2κ2− 6H 2

1 .

207963.tex; 1/06/1999; 14:32; p.12



Solitary and periodic solutions161

IV.2. This case has insteadd = e = b̃ = g̃ = 0 and ρ1 = −ρ2 = −1, β = α. The profiles
are:

u = 6r2
√−pp̃ eiακ {H2 cnrζ − i snrζ dnrζ },

v = 6r2p e2iα{13(1+ κ2−H 2
2 )− κ2 sn2 rζ },

whereH 2
2 = 1

3{1−2κ2+√(2κ2 + 2)(2− κ2)}, for anyκ2 6 1. The corresponding propaga-
tion conditions are5/(rp) = 4H2, 5̃/(rp̃) = −6H2,

6/(r2p) = 2κ2− 1− 2H 2
2 , 6̃/(r2p̃) = 4κ2− 2− 6H 2

2 .

IV.3. This hase∓ κf = h̃± κg̃ = 0 and arises from (ii) or (iii) respectively. The profiles are:

u = 3r2
√−pp̃ eiα(κ cnrζ ∓ dnrζ )(1

2H3− iκ snrζ ),

v = 3r2p e2iα{16(1+ κ2−H 2
3 )∓ κ cnrζ dnrζ − κ2sn2rζ },

whereH 2
3 = 1

3{−2− 2κ2 +√2(6κ + κ2+ 1)(6κ − κ2− 1)}, for κ2 ∈ [5− 2
√

6,1] and the
propagation conditions are5/(rp) = 2H3, 5̃/(rp̃) = −3H3,

6/(r2p) = 1
2(1+ κ2−H 2

3 ), 6̃/(r2p̃) = 1+ κ2− 3
2H

2
3 .

For all cases,ue−iα is complex,Re(ue−iα) andIm(ue−iα) are even and odd functions,
respectively, whilev e−2iα is even and real. They are shown in Figures 4(b), (c), (d) and
have periods foru andv which are the same as for the corresponding cases of Class II. The
intensities of these waves look similar and represent a sequence of double bright pulses for
|u| and of bright-centred twin-hole pulses for|v|. As κ → 1, each of these profiles reduces
to the single case of the solitary wave (IV) which has zero phase change, namely the case
µ = 0(Y = 0) of Figure 2(d).

We should note, that Cases II.1 and II.2, like Cases IV.1 and IV.2 are connected by a
reciprocal transformation. Namely, by applying the transformation(r, κ) → (κ−1r, κ−1) to
one member of each pair, one can obtain the formulae for the other member.

The only solution generalizing Class (V) relates to the periodic solution of the NLS equa-
tion. It is

u = rκ
√

2p6̃ eiα snrζ, v = 2r2κ2p e2iα sn2 rζ,

with 5 = 5̃ = p̃ = 0, 6 = r2(1+ κ2)p. Also, despite extensive use of Maple V, we have
found no generalizations of Class (VI) other than the twin-hole solutions found earlier as cases
I.1−, I.2−, I.3−.

We conclude by observing that, while we have been able to generalize vector solitons of
each of the Classes (I–III) to periodic solutions, the only extensions of Class (IV) found are
generalizations of the special case illustrated in Figure 2(d). We observe that the only periodic
solutions which we have found as the generalizations of dark vector solitons correspond to
vector solitons with either zero orπ phase change across the soliton.
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