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Abstract. Many types of periodic solutions to the pair of nonlinear partial differential equations describing optical
cascading are obtained in terms of Jacobian elliptic functions. The choice of appropriate forms for periodic solu-
tions is based on the known solitary-wave solutions of the system. By a straightforward procedure for determining
coefficients, it is possible to construct periodic analogues of some classes of solitary wave solutions.
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1. Introduction

Localized solutions (vector solitons) of coupled nonlinear Schrédinger (NLS) equations are
of interest in nonlinear optics and telecommunications, since many waveguides are capable
of supporting more than one mode with closely matched phase and group speeds. Recently,
a number of proposals for exploiting coupled pulses or beams in compact devices using
crystals with significant quadratic nonlinearity have been proposed, following experimental
demonstration of ‘spatial vector solitons’ using the cascading process in which a beam at a
fundamental frequency couples resonantly to one at the second harmonic frequency.

A number of explicit solutions to the quadratically coupled ‘cascading’ p.d.e.s have been
found (Karamzin and Sukhorukov [1], Hayata and Koshiba [2], Werner and Drumond [3, 4],
Menyuk, Shiek and Torner [5], Parker [6]). Those found in [1-4] are bright-bright solitons,
while some bright-dark solitons appear in [5] and reference [6] includes many possibilities in
which both modes have constant (nonzero) amplitude at a distance from the soliton.

Just as coupled NLS systems have solutions with periodic envelopes.(s§& 8]) de-
scribed by Jacobian elliptic functions, it transpires that the cascading equations also possess
solutions involving elliptic functions [9]. This paper details all such solutions found by an
exhaustive search procedure and relates them to the known vector soliton solutions. Typ-
ical profiles are illustrated, showing how, as the period increases, the solutions become like
periodically spaced solitary wave solutions.

Since the governing Equations (3) for optical cascading may also describe resonant in-
teractions between a fundamental and a second-harmonic signal in other branches of physical
science, the solutions described here should have broad applicability. They certainly are only a
subset of all possible travelling-wave or stationary solutions (described by bounded solutions
of Equations (6) and (7)). While the present analysis does not address the question of stability,
it does indicate the rich variety of possible waveforms. Each provides a starting point for a
numerical search for stable waveforms using parameter continuation.

* On leave from the Physical-Technical Institute of the Uzbek Academy of Sciences, Tashkent, Uzbekistan.
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150 D. F. Parker and E. N. Tsoy

2. Formulation and solitary solutions

In a planar waveguide having optical properties depending only on the Cartesian coordinate
x3, the electric field of a linearized guided mode may be written as

E = W(x3;k,a))ei‘/’, Y=k -x— owt, Q)

with frequencyw, (surface) wave vectdr = (k1, k», 0) and phase speed= w/k, (k = |k|)
determined by a dispersion relati@dw, k) = 0 (or, equivalentlyw = 2 (k)). The function
W (x3; k, w) describes the modal field, while the associated group velegity= g(k) has
component; = 9Q2/dk; = —(0D/0dk;)/(0D/dw), (i = 1,2), gz = 0 and has magnitude
Cg =gl

Strong nonlinear interaction between modes can arise if a second harmonicEnede
W@ (x3; k?, 20) expliy @), wherey @ = k@ . x — 2wt, has bothk® ~ 2k andg® =
BQ/akfz) ~ g; for 20 = Q(k®). Thus, the phase and group velocities are simultaneously
closely matched.

Coordinatesy; = e(p1x1 + paxz — cgt), Y2 = e(p1xz — pax1), Z = 2 (p1x1 + poxp) are
introduced withp = (p1, p2, 0) = g/|g| the unit vector parallel to the group velocity of the
fundamental mode. Then, allowing for both spatial and temporal modulation of the complex
amplitudesA(ys, y2, Z), B(y1, y2, Z) in the representation

E=AWEV + BWP &V 4 c.c.4+ O(e), (2)

where c.c. denotes the complex conjugate, we find that the amplitude-modulation equations
can be put into the form

. 0A 92A

IM— + Pjy,——— = J*ZA*B,
8Z 8y,8yL

128 47,28 | Ap b, CE a2 (3)
0z oy, ayay, 0

where summation over repeated indided. (= 1, 2) is assumed. Derivation of Equations (3)
requires the restrictiong®@ — g)/Ig| = O(¢), (k'® — 2k)/k = O(&?), for somes « 1.
Thus, phase-velocity matching is more stringent than group-velocity matching.
Dependence om; and y, records modulations along and transverse, respectively, to rays
having orientatiorg, relative to an observer moving at velocigyDependence o4 measures
the gradual evolution along each ray. The paramefgisM and P;, /M are matrices of
dispersion and diffraction coefficients for the fundamental and second-harmonic modes, re-
spectively. The parameters/ M andy, /M arise from the phase speed mismatéh— ¢ and
group velocity mismatclg® — g, respectively. The (complex) coefficiediy M is computed
as amodal overlapintegral of the two modes, whifedenotes a complex conjugate, with
andM (~ 2M) both real.
Travelling-wave solutions to theascading systelf8) are sought in the form

V2A = 77 %), 2B = J ey (0), (4)

{=kyy)—MZ, 0=By,—M'oZ. (5)
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Solitary and periodic solutions151

Insertion into (3) then yields the simultaneous ordinary differential equations (o.d.e.)

pu” (&) + i’ (¢) + Su(f) = u*(§)v(), (6)

pY(0) + iV (©) + E(¢) = u?(Z) 7)
in which’” denotes @d; and the real coefficients are

p = Pjrrjkr, P = Prrrsky,

II=1+2P; BskL, [M=MM"44P; Bk, + Pk,

Y=—0-PuBif. T=A-2p,8—20MM " — 4P, BB

Motivated by the solutions found in [1-5] (and by the large mismatch beha¥lous oo
in which (7) givesv ~ X142, so that (6) yields the NLS equation), solutions were sought in
[6] in the form

u=aS*+bST +cS+dT +e, v=aS?+bST + &S +dT +é, (8)

in which a, b, ..., e arecomplexconstants, whileS = sechr¢), T = tanhr¢). Insertion

into the system (6), (7) then yielded two sets of nine algebraic equations, for.. ., ¢
Although this algebraic system is overdetermined, it possesses six classes of solution, which
were identified by an exhaustive search procedure. They yield solutions (8) as follows:

() u=6r?/ppe*seclfre, v=—6r2pe“seclr¢ forpp > 0.

These solutions (published previously in [1, 2, 3]) have Qotrand [v] in the sech form of
a KdV soliton. They require that theropagation condition§1 = [1 = 0, = = —4r2p, ¥ =
—4r?p are fulfilled.

() u =i6r2/—pp€*sech¢ tanhre, v==6rpe?@seclr; forpp <O.

These solutlons in which is odd ~are given in [3] and [5]. They require the propagation
conditionsIlT =M =0, X = —r?p, ¥ = 2r?p.

)y u = (2x%)Y?e* sechre, v=—2r’pe?*sechr; for=¥ > 0.
These solutions, given in [4], require propagation conditibins: [T = p = 0, £ = —r?p.

This is the cas@ = £~14? in which (6) reduces to the o.d.e. for NLS solitons. Each of
(D—(1) describes bright-bright solitons.

(V) u=6r2/—ppe*{X +itanhr¢} sechre,
v =6r’p @ (L1F_ (1) + seckr¢ + 2iY tanhrg}  for pp < 0

with X = tanu+37Y2secu, Y = tanu, Fi(n) = X(9Y —2X) £ (24 3Y/X). In this family
of solutions, given in [6]u is adjustable. The propagation conditions are

I/rp = 2(3Y — 2X), I/rp =2(3X —Y),
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/(r’p)=Fi(w)—1, =0

For eachu, the profileu is bright while|v| tends to a nonzero constant|as — oc.

V) u=¢€*/pE{I1/(2p) +irtanhrc}, v=3x"Y? forpT > 0.

These solutions, mentioned in [6], like (lll) correspond to a case in which (6) reduces to
the o.d.e. for NLS solitons. They describe grey/grey solitons, with propagation conditions
2/(r?p) =2+ 3(I/rp)?, p=T=0.

V) u=6r2/ppe*{sectrt +iXtanhrs — QX},
v=—6r2p*(seclr¢ + 2iY tanhr¢ + (071 — Q)Y} for pp > 0.

These solutions, in which typically both| and|v| are nonzero as — +oo, like (IV) involve
an adjustable parameter, sinke Y and Q may be any solutions of

30X —607Y +9XY =2+ 2X?,
30X2=6XY(Q+7Y)—2y3—2y — 3x?y.
Typical profile pairs are shown in [6]. The associated propagation conditions are
/rp =23Y — 2X), I/rp =23X —Y),
$/(r?p) =6(QY + 07'X),  £/(0*p) = 60Xy "

In solutions of each of the classes (I)-(VI) the propagation conditions provide restrictions
on the parameters,, k2, 81, B2, 0 andr appearing in (5), (8). Possibilities include spatial
solitons (k1 = 0), in which e(k,M)~* corresponds to a ‘walk-off’ angle, purely temporal
solitons , = 0) and, more generally, temporal solitons oriented obliquely to the ray direction
p. In all cases, these anector solitons, in which signals in theand v modes are bound
together by the cascading (feedback) process.

3. Periodic travelling-wave solutions

The procedure for seeking periodic solutions generalizing the solutions of classes (I)-(VI) to
Equations (6) and (7) is to use the ansatz

u =a+bN+cC+dD+eNC+ fND +gCD + hN?,

v =a+bN+Eé +dD+éNC+ fND+ 3CD + hN?, 9)
involving the Jacobian elliptic functions

C =cnre, D =dnr¢, N =snr¢,
which satisfy the identities

C?+N?=1, D? + k?N? =1,
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Solitary and periodic solutions153
C' = —rND, D' = —rk2NC, N =rCD, (10)

wherex is the modulus anfidenotes dd¢, as earlier. It should be recalled th@tand D are
even functions of ¢, while N is odd. Moreover, for moderate values|ef|, ask — 1 both
C, D — sechr¢, while N — tanhre¢.

After the ansatz (9) is inserted into (6) and (7), use of the identities (10) to elimiifate
andD? in favour of N2 allows both sides of each equation to be written as linear combinations
of

1,N,C, D; NC,ND,CD, N% N2C,N?D, NCD, N
N3C,N3D, N°CD, N*.
Comparison of coefficients in (6) then yields the sixteen equations:
N4 6K2r2ph= —e*é—xzf*f+/c2g*§+h*fz,
N2CD: 6k2r2pg =e*f + f*é+ g*h + h*3g,
N3D : 6i2r?pf = f*h +h*f —e*g — g*e,
N3C : 6k2ripe = ¢*h + h*é — k2 f*§ — k2g* f,
N3 2c2r2pb + i2k2rTlg = b*h 4+ h*b — k2d* f — k2f*d — c¢*é — e*C,
NCD: i2rTlh =b*g + g*b + ¢* f + f*¢ +d*é + e*d,
N2D:  2%%2pd —i2rTle = b* f + f*b — ¢*§ — g*¢ + d*h + h*d,
N2C : 2c2r2pe — i2k2rTIf = b*e + e*b + ¢*h + h*¢ — kK2d*§ — k2g*d,

N?: [Z — 41 +«2r’plh = a*h + h*a + b*b — ¢*¢ — k2d*d
+e*e+ f*f — (14 xd)g*g,
CD: (2 — A+«dr2plg +irllb = a*§ + g*a + ¢*d + d*¢,
ND: [S—A+4%&2r2plf —irllc =a*f + f*a+ b*d + d*b + €*§ + g*é,
NC : [ — (44 «Dr2ple —ik%rTld = a*e + e*a + b*¢ + c*b+ f*§ + g* f,
D (T — «k%2p)d +irlle = a*d + d*a + c*§ + g*¢,
C: (= = r2p)e +irllf = a*¢ + ¢*a + d*g + g*d,
N (2 — (L4 k2)r2plb — (1 +«2)rTlg = a*bh + b*a + c*é + e* ¢+ d* f + f*d,
1 Ya + 2r2ph = a*a + ¢*¢ + d*d + ¢*§.

From Equation (7) an analogous set of 16 equations is obtainedawith .. z; p, 1, X on

the left-hand sides replaced Byb, ...k; p, 1, £ and with all symbols and ~ removed

from the right-hand sides. This (grossly) overdetermined set of 32 equations for sixteen coef-
ficients in (9) and fop, p, I1, I1, = andX may be analysed (much as the analogous equations
arising from (9) are analysed in [6]) by suitable groupings of the equations and coefficients.
Moreover, it is known from the solutions presented in Section 2, that many classes of vector
soliton exist in the limitc = 1.
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154 D. F. Parker and E. N. Tsoy

The eight equations arising from the coefficients\st, N>°C D, N*D and N3C may be
combined in pairs to give

6c?r’pe i f) = 2e+rf)(hFrg),
6x2r2p(h £x8) = (h£xg)?— (e Frf)>
6c?r?phtxg) = (h* £1g")(h£xg) — (¢ FrfHEF ),
6c2r?ple £xf) = (e £uf*(hFrg) + W FrgHE£«f).
Moreover, these may be further combined and rewritten in terms of the eight quantities
h+kgxile—«f) = Xq, h—kgxile+kf) =Yy,
h+kgti@E—«xf) = Xa, h—kgti@E+«xf)=7Yy,
as two uncoupled, but similar, pairs of equations
6K2r2ﬁ)~(i = Xi, 6/c2r2pXi = Xif(i,
6K2r2ﬁ17i = Yi, 6/{2;’2ijE = YI?i.

These show, that eithet, = 0 = X_ or X, X* = K? = X_X*, while simultaneously

eitherY, = 0=Y_orY,Y* = K? = Y_Y}, whereK = 6k?%,/pp is either real or pure

imaginary. Consequently, four possibilities arisedor, g, h; e, f, g, h:

() Xy =0=Y,.Thisgivese = f = g=h =0witheithere = f =g =horp=0(a
propagation condition).

(i) Xe = 0,Y, = Kp*'e® with p and« real and arbitrary, so that, = 0,Y, =
6k 2r? pp*2 8 This yields the representation

e=kf =3 pp e (o — p ), h=—xg= W2 ppEn(p+ p,
e=kf==3urp(0* —p?),  h=-kg=3r’p&(p’+p7d).

(i) Y. = 0 with X, = Kp*€*. Since this is equivalent to (ii) after the replacement
k — —k, this need not be considered further.

(iv) X+ = Kp e, Xy = 6K °r? pp,*? g2ia:
Yi = Kp*leb, Y. = 6ic%r2pp,t? 4P
with p1, p2, @ andB real and arbitrary. This gives equations for each,of, . . . 2 which
involve all four parameters, 8, p; andp, (e.g h = L—ll(XJr +X_+Y, . +7Y)).

An exhaustive search procedure next solves the eight equations arising from terms of degree
three inC, D andN as a linear system fdr, ¢, d, b,¢,d, together with compatibility condi-

tions. However, since in the limik — 1 solutions have been found only for classes (1)-(VI)

in each of which many of the coefficients in (9) vanish, a simpler strategy has been followed,
by seeking solutions in classes which generalize each of ()—(VI).
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Class |

Since the only combinations @f, D andN which appear in (9) yet tend to séoft ask — 1
areCD and 1— N2, solutions are sought by retaining only the coefficients, &, a, g andh

in (9). This yields sixteen algebraic equations having three separate possibilities for solution
(each withpp > 0):

I.1. This utilizes (ii) or (iii) with p = 1, with o arbitrary and withh = +«g, h = +«g. The
profiles are:

u= 31’2\/Eei"‘{/czsn2 r¢ £xcnrednre — %[l—i— k%4 L]},

v =3r2p e k?srtrt + kcnre dnr — %[l—i— K%+ L]},

whereL = +,/(1+ «2)2 + 12«2. The correspondingropagation conditionsre:
M=I1=0, >/(r’p) = £/(r’p) = —L.

.2. This hasg = § = 0, h = 6k%r2,/pp €%, h = 6x%r2p ¥ with o arbitrary. The profiles
are:

u = 6r>/ppe?srtrc — %[l—i— K>+ M},
v = 6r2pe®*{k?srtr; — %[14—/{2 + M1},

whereM = +v/1 — «2 + «* and thepropagation conditionsre:
M=1II=0, >/(r?p) = £/(r%p) = —4M.

1.3. Thishash = § = 0, g = i6k2r2/pp €%, h = —612r?p €@ with « arbitrary. The profiles
are:

U= i6Kr2\/ﬁéacnr§ dnre, v = 6k%r?p @21 + k)t — st re],

WithIT =11 =0, =/(r2p) = 14+ k2 — 1221 + kD)L, £/(r2p) = —2(1 + «?).

To help in the interpretation of these profiles, it should be recalled that eachrofdnr¢,
snr¢ has period & (), wherek (k) is the complete elliptic integral. Moreover, cn and dn are
even functions, while sn is odd and@n + 2K) = dnr¢, while cn(r¢ 4+ 2K) = —cnr¢ and
sn(r¢ +2K) = —snr¢. Hence, changing the sign of any teknanr¢ in .1 or 1.3 is equivalent
merely to a shift X along ther¢ axis.

For 1.1, the profiles: e andv e 2 are real and in constant ratio. Fbrpositive, in the
limit « — 1, both—u e and—v e 2« are sechr¢ pulses when the minus sign is taken in
front of k. Fork # 1, the profiles become periodically spaced pulses, with period 4K (x).
When the positive sign is taken in front of the only change is that pulses are displaced by
2K (k) along ther¢ axis (so that, a8 — 1, thenu — 0, v — 0 at¢ = 0). These pulses 1,1
are illustrated in Figure 1(a).

The choice ofL as the negative square root merely adw |L| to ue @, so giving
the profiles 1.1 as shown in Figure 1(b). Againe 2 has a similar profile, so that the
solution describes periodically-spaced twin-hole dark pulses. These generalize the twin-hole
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-10 5 0 55¢ 10

Figure 1. Profiles ofii = u/(6r2,/pp &%) andi = v/(6r2p €2®) versusr¢ for k = 0-8 ----, k = 0.9 —,
k = 099 —. (a) Case 1.3, —u = —v; (b) Case I.1, —ii = —v; (c) Case 1.2, —u = —v; (d) Case |.2,
—u = —v; (e) Case |.3+ii; (f) Case 1.3p.

dark pulses of Hayata and Koshiba [10] and Buryak and Kivshar [11]. They have no change
in phase across each pulse.

For 1.2, the profiles ot ' andv e=?“ are again real and in constant ratio. Takitg
as the positive square root gives profiles | —u e~ and—v e 2* as periodically spaced
pulses, but with period 2K («Which is half that of I.1. Similarly, the choice dff as the
negative square root gives periodically-spaced twin-hole pulses, without phase change. These
profiles (1.2.) are shown in Figures 1(c), (d), respectively.

For 1.3, profiles of—iu e andv e 2* are both real and periodic, but they differ. The
profile of ve2¢ is a sequence of bright pulses with periof @), while that of —iu e~@
has double the period. The alternation of positive and negative pulses corresponds to phase
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Figure 2. Solitary wave profiles. (&) = —v = sectr¢ for Class ;b =v = % — sectfr¢ twin-hole dark
solitons [10, 11]; (c)}-ia = sechr¢ tanhr¢, v = seclr¢ for Class (1; (d)Re) ----, Im@) ------ , li] —and
o —, for the special casg = 0 of Class (IV) withi = (372 — itanhr¢)sechv¢, © = seclfre — 2.

shifts of +7 acrossu pulses at separationkdx) (without a phase shift im e2¢). Thus, al-
though the intensitiel:|? and|v|? are somewhat similar to those for L. 2here is an essential
distinction in the phase dependence.

For each of I.1, 1.2 and 1.3 the propagation conditions include the equdioasll = 0,
while =/(r?p) andX /(r?p) depend om. Since in all the cases ,11.2, and 1.3 correspond-
ing to periodically spaced bright pulses it is seen thatr2p) — —4, £/(r2p) — —4 as
k — 1, each of these cases is a generalization of the Karamzin and Sukhorukov [1] solution
(. As k — 1, the period increases (logarithmically) and the profiles tend to periodically
spaced copies of solution (I), shown in Figure 2(a). The twin-hole casesahd 1.2. have
L - —4, M — —1, sothats/(r?p) — 4, /(r?p) — 4 ask — 1. Moreover, since they
have

—iue™, ve ™ — tantfr; — 3,
they are natural generalizations of the Hayata and Koshiba [10] twin-hole dark solitons shown
in Figure 2(b), included in (VI) as the limiting ca¥e= X, 0X =2/3, X — 0.

Class I

To generalize the Werner and Drummond odd-even solutions (Il) shown in Figure 2(c), the
ansatz (9) is simplified by retaining only the coefficieats, a, g andA. This again produces
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sixteen algebraic equations which possess three types of solution. Since they each correspond
to pp < 0, the representation in (iv) is modified using

X, = :|:6K2r2\/——pﬁ,ol +lda Y. = :|:6/<2r2\/——p‘5,02 +1df,
II.1. This hasf = g =0, so usinge; = p» = —1, B = «. The profiles are

u= i6r2\/——pﬁei"‘/<23nr§ cnre, v =6r2p (2 —«k?) L —srfre)
with corresponding propagation conditions

N=I1=0; S/(r?p) = 4+ k% — 622 — kD7, S/(r?p) = 4 — 2.
[I.2. This hase = g = 0 and arises fronp; = —p, = 1, 8 = «. The profiles are:

U= i6r2\/——pﬁei“/c snr¢ dnre, v =6rlp @ {(2%? — 1)t — srtre)
with corresponding propagation conditions

N=I=0 X/¢’p)=1+%4>—-622%-17, T/0¢?p)=42%?-2.

I1.3. This hase F «f = 0,7 + «xg = 0 and arises from (ii) or (iii) respectively, after
modification to allow forpp being negative. The profiles are:

u= i3r2\/——pﬁei°‘/< snr¢ {kcnr¢ £dnrg},
v=3r2p @21+ «k®) "t £k enrednre — k?snri)
with corresponding propagation conditions
MN=I=0; Y/r%p) = 14+ «k? — 6?1+ k%71, >/(r%p) = 1+ k2

In each casey is an odd, imaginary function, while is even and real. In Il.1 both and

v have fundamental periodkX«); in 11.2, v still has period X («), but« has fundamental
period 4 (x); in 1.3, bothu andv have fundamental periodk(x). As we see in Figure 3(e),

(), case 1.3 (using the plus sign id-) describes widely-spaced odd—even pulses resembling
the vector solitons of Class (ll) (see Figure 2(c)) and centred at 0, 4K («), etc. The
analogous case ll.3differs only by displacing the pulses th2K (x), etc. Case Il.1 has
similar pulses but at closer spacing 2K (&)is noticeable in Figure 3(b) that, even for=

0.9, this |v| profile develops appreciable brightness within the dark troughs between pulses.
Case 1.2 differs in that the odd pulsesofwhich are centred ate = (4n + 2)K (k) have
opposite sense to thoserdt = 4nK («), n integer, as seen in Figure 3(c). Correspondingly,
the pulses fow in Figure 3(d) do not develop twin-holes as in case II.1. Unlike cases II.1 and
1.3, in which the trajectories of—iu e, v e=2%) encircle the origin once per period, case
II.2 has trajectories which are open arcs. Consequently, there is no relative shift in phase per
complete period of the profile.
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10

=5 ¢ 10

Figure 3. Profiles ofii = —iu/(6r2,/—pp€®) andv = v/(6r2p €2%) versusr¢ for k = 0.8 ----, k = 0.9
—, k = 0:99—. (a) Case Il.15z; (b) Case Il.15; (c) Case Il.2j; (d) Case II.1p; (e) Case 1.3, u; (f) Case
.34, 0.

Class Il
This is the case in which = X2 with c,d, a = £71(c? + d?),§ = 25~'cd and
h = —X71(c? + k?d?) the only nonvanishing coefficients. These solutions have profiles

_py
u=ir % €k cnr¢ £dnre},

v = r2p ezm{%(l +«?) £ kenrednre —k?srére}
with corresponding propagation conditions

M=I1=0; p=0, X/(r%p) = —1(1+«?).
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Figure 4. (a) Profilesk cnr¢ + dnr¢ for Class lll,k = 0.8 ----,k = 0.9 —, x = 0.99 —, (b d) Profiles of
Re(it) ----, Jm) - . |#] — andv — for Class IV withii = u/(6r2,/—p %), 5 = v/(6r2p €%i%) versus
r¢ fork = 0-9. (b) Case IV1 (c) Case IV.2; (d) Case IV.3.

The profiles are even and represent bright pulses at separation 4ée@tyed at 4K («)

for the positive sign as in Figure 4(a), but centred 2t 4n)K (k) for the negative sign.
These latter have profile far virtually identical to those for Case L}. However, like the
corresponding solitary pulses (lIll), found by Werner and Drummond [4], these solutions cor-
respond to the abnormal case in which dispersion and diffraction of the second-harmonic are
effectively absent. Their practical importance is thereby limited.

Class IV

Solutions generalizing the bright-dark solitary waves (IV) require that, in (9), only the coef-
ficientsc, d, e, f,a, b, g and/ are retained. Besides the bright-bright possibilities 11.1-11.3
found earlier, this yields three cases (eachpr< 0):

IV.1. Thishasc = f =b = g =0, so usingo; = p» = 1, we have8 = «. The profiles are:

u = 6r2/—pp “{Hidnr¢ — ik%cnr snre),
v="6rp eZi“{%(l—i- K2 — le) — k2srere)

where H? = 1{x? — 2+ /(22 + 2)(22 — 1)}, for k2 € [v/3 — 1, 1]. The corresponding
propagation conditions at@/(rp) = 4Hi, I1/(rp) = —6Hx,

%/(?p) =2—«k*—2HE,  T/(r?p) =4— 2% — 6HL.
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IV.2. This case has insteatl=¢ =b =g =0and g = —p» = —1, 8 = «. The profiles
are:

u = 6r2\/—pp i {Hocnr¢ —isnre dnre),

v="6rp eZi“{%(l—i— k2 — H2) — «k?srtrel,

whereH? = {1 — 2%+ /(22 + 2)(2 — «?)}, for anyx? < 1. The corresponding propaga-
tion conditions ard1/(rp) = 4H,, I1/(rp) = —6Hs,

B/0?p) =% —1-2HZ,  $/(*p) = 4*—2— 6HZ.
IV.3. This hase F«f = h +«g = 0 and arises from (ii) or (iii) respectively. The profiles are:
u=32/—ppekenr: dnr;)(%Hg — ik snre),

v=232p eZi“{%(l—i- K2 — H32) Frenrednre — k?sréred,

whereHZ = 3{—2 — 22 + /2(6k + k2 + 1)(6k — k2 — 1)}, for k% € [5 — 2¢/6, 1] and the
propagation conditions até/(rp) = 2Hs, I1/(r p) = —3Ha,

T/?p) = 3A+«2—HD),  £/0?p)=1+«?—iH}

For all casesy €' is complex,9e(u e '@) and Jm(u €'*) are even and odd functions,
respectively, whileve=2¢ is even and real. They are shown in Figures 4(b), (c), (d) and
have periods forr andv which are the same as for the corresponding cases of Class Il. The
intensities of these waves look similar and represent a sequence of double bright pulses for
lu| and of bright-centred twin-hole pulses fa. Ask — 1, each of these profiles reduces
to the single case of the solitary wave (V) which has zero phase change, namely the case
uw =0 = 0) of Figure 2(d).

We should note, that Cases Il.1 and 11.2, like Cases IV.1 and IV.2 are connected by a
reciprocal transformation. Namely, by applying the transformation) — (x 17, k1) to
one member of each pair, one can obtain the formulae for the other member.

The only solution generalizing Class (V) relates to the periodic solution of the NLS equa-
tion. Itis

u = riy/2p3 é*snre, v =2r%?pstre,

wWithIT =TI = p = 0, £ = r%(1+ «?)p. Also, despite extensive use of Maple V, we have
found no generalizations of Class (VI) other than the twin-hole solutions found earlier as cases
1.,1.2_,1.3_.

We conclude by observing that, while we have been able to generalize vector solitons of
each of the Classes (I-lll) to periodic solutions, the only extensions of Class (V) found are
generalizations of the special case illustrated in Figure 2(d). We observe that the only periodic
solutions which we have found as the generalizations of dark vector solitons correspond to
vector solitons with either zero ar phase change across the soliton.
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